SERVIÇO №: CHM-A/MEM/PCE/001-01

MEMORIAL DE CÁLCULO PRÉ-ESCOLA MUNICIPAL PROF.º RACHEL RIBEIRO REZENDE

Prefeitura Municipal de Cachoeira de Minas

Cachoeira de Minas Minas Gerais

ESTRUTURA DE CONCRETO ARMADO E METÁLICA

Memorial de Cálculo

Página: Al2/26

Cálculo Estrutural – Estruturas de Concreto Armado e Metálica

Sumário

1.	DADOS DO EMPREENDIMENTO E DO RESPONSÁVEL TÉCNICO	3
2.	INTRODUÇÃO	4
3.	RESPONSABILIDADE TÉCNICA	4
4.	CONSIDERAÇÕES DE CARGAS	4
	4.1 ESTADOS LIMITES E COMBINAÇÕES:	4
	4.2 CARGAS DE VENTO:	5
	4.3 CARGAS PERMANENTES:	8
5.	DIMENSIONAMENTO	8
	5.1 PEÇAS METÁLICAS:	8
	5.2 LIGAÇÕES:	9
	5.2.1. Concreto sobre o qual se apoia a placa	9
	5.2.2. Parafusos de ancoragem	9
	5.2.3. Placa de ancoragem	9
6.	FUNDAÇÕES	11
7.	PISO DE CONCRETO ARMADO	11
8.	CONSIDERAÇÕES FINAIS:	12
9.	QUADROS E PLANILHAS DE CÁLCULO	13
	9.1 COEFICIENTES PARA COMBINAÇÕES DE CONCRETO EM FUNDAÇÕES (E.L.U.) CONFORME ABNT	
	NBR 6118:2014	13
	9.2 COEFICIENTES PARA COMBINAÇÕES DAS PEÇAS DE AÇO DOBRADO CONFORME ABNT NBR 1476 2010	52: 14
	9.3 COEFICIENTES PARA COMBINAÇÕES DAS PEÇAS DE AÇO LAMINADO CONFORME ABNT NBR 880	0:
	2008	15
	9.4 COEFICIENTES PARA COMBINAÇÕES - TENSÕES SOBRE O TERRENO	16
	9.5 COEFICIENTES PARA COMBINAÇÕES - DESLOCAMENTOS	16
	9.6 COEFICIENTES DE PRESSÃO E DE FORMA PARA CÁLCULO DA FORÇA DE VENTO NA ESTRUTURA	17
	9.7 EXEMPLO DE VERIFICAÇÃO DAS PLACAS DE ANCORAGEM - PLACA TIPO 1	18
	9.8 EXEMPLO DE VERIFICAÇÃO DAS SAPATAS DE CONCRETO ARMADO	21
	9.9 EXEMPLO DE VERIFICAÇÃO DAS VIGAS DE TRAVAMENTO (BALDRAME) DE CONCRETO ARMADO	25
	9.10 CÁLCULO DO PISO DE CONCRETO ARMADO	26

1. DADOS DO EMPREENDIMENTO E DO RESPONSÁVEL TÉCNICO

Empreendimento:	Cobertura Metálica da Área de Recreação Escola Municipal Prof ^a Rachel Ribeiro Rezende
Local:	Rua José Adolfo da Silveira, nº 51, centro
Município:	Cachoeira de Minas - Minas Gerais

Proprietário:	Pref. Municipal de Cachoeira de Minas
CNPJ:	18.675.959/0001-92

Responsável Técnico pelo Projeto:	Carlos Henrique Amaral Rossi Engenheiro Civil e de Segurança do Trabalho CREA-MG: 46.052/D / RNP: 140295523-5					
ART nº:	1420200000006152766 (REGISTRADA EM 20/07/2020)					
E-mail:	eng.carlosrossi@gmail.com icthus@icthusengenharia.com rossi@icthusengenharia.com					
Telefone:	(35)3025.6092 (35) 99730.8483 (31) 98766.8483					
Data:	25 de agosto de 2020					

2. INTRODUÇÃO

O presente memorial tem como intuito demonstrar as considerações de cálculo de uma estrutura metálica para cobertura de um parque de uso infanto juvenil, apoiada sobre fundação e de um piso em concreto armado para a supracitada área, conforme as especificações da NBR 6120/2018 "Cargas para cálculo de estruturas de edificações", NBR 8800/2008 "Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edificios", NBR 6123/1988 "Forças devidas ao vento em edificações", NBR 14762/2010 "Dimensionamento de estruturas de aço constituídas por perfis formados a frio" e NBR 6118/2014 "Projetos de estruturas de concreto". Dessa forma, foram estabelecidas condições para a determinação das cargas consideradas e as devidas verificações dos elementos estruturais.

3. RESPONSABILIDADE TÉCNICA

As obras deverão ser executadas por empresa com comprovada qualificação para execução de tais serviços, sob a responsabilidade técnica de profissional habilitado, acompanhadas da respectiva Anotação de Responsabilidade Técnica do CREA ou Registro de Responsabilidade Técnica do CAU.

A fiscalização será efetuada pelo Responsável Técnico da Prefeitura Municipal de Cachoeira de Mina.

4. CONSIDERAÇÕES DE CARGAS

4.1 ESTADOS LIMITES E COMBINAÇÕES:

No quadro a seguir são apresentados os estados limites e suas respectivas normatizações adotados no cálculo estrutural:

E.L.U. Concreto em fundações	ABNT NBR 6118:2014(ELU)
E.L.U. Aço dobrado	ABNT NBR 14762: 2010
E.L.U. Aço laminado	NBR 8800: 2008
Tensões sobre o terreno Deslocamentos	Ações características

Para as distintas situações de projeto, as combinações de ações foram definidas de acordo com os seguintes critérios, conforme os coeficientes prescritos nas normas brasileiras para cada combinação de cargas:

Situações permanentes ou transitórias

Com coeficientes de combinação

$$\sum_{j \geq 1} \gamma_{Qj} G_{kj} + \gamma_{P} P_{k} + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i \geq 1} \gamma_{Qi} \Psi_{ai} Q_{ki}$$

Sem coeficientes de combinação

$$\sum_{j \ge 1} \gamma_{Qj} G_{kj} + \gamma_{P} P_{k} + \sum_{j \ge 1} \gamma_{Qj} Q_{kj}$$

iCTHUS ENGENHARIA

Combinações acidentais

Com coeficientes de combinação

$$\sum_{j \geq 1} \gamma_{\text{G}j} G_{kj} + \gamma_{\text{P}} P_k + \gamma_{\text{A}_{\text{d}}} A_{\text{d}} + \sum_{j \geq 1} \gamma_{\text{Q}j} \Psi_{\text{a}j} Q_{kl}$$

Sem coeficientes de combinação

$$\sum_{j \geq 1} \gamma_{Gj} G_{kj} + \gamma_P P_k + \gamma_{A_d} A_d + \sum_{j \geq 1} \gamma_{Qj} Q_{kl}$$

Onde:

 G_k Ação permanente

 P_k Ação de pré-esforço

 Q_k Ação variável

 A_d Ação acidental

 γ_{G} Coeficiente parcial de segurança das ações permanentes

 γ_P Coeficiente parcial de segurança da ação de pré-esforço

 $\gamma_{\text{Q,1}}$ Coeficiente parcial de segurança da ação variável principal

 $\gamma_{Q,i}$ Coeficiente parcial de segurança das ações variáveis de acompanhamento

 γ_{Ad} Coeficiente parcial de segurança da ação acidental

 $\psi_{p,1}$ Coeficiente de combinação da ação variável principal

 $\psi_{\mathsf{a},i}$ Coeficiente de combinação das ações variáveis de acompanhamento

Todos coeficientes adotados são apresentados em planilhas anexas a este memorial.

4.2 CARGAS DE VENTO:

Para o dimensionamento das peças da estrutura foram consideradas relevantes situações de cargas provenientes de ações do vento na estrutura, conforme especificidades da NBR 6123/1988 "Forças devidas ao vento em edificações".

Definida a geometria, conforme dimensões de projeto, tem-se:

b=19,20m

a=24,30m (medidas intereixos de pilares)

Não foram consideradas aberturas de vãos por se tratar de estrutura totalmente aberta nas laterais, portanto, "permeável".

A velocidade básica do vento (V0) foi coletada do mapa de isopletas para a região do sul de Minas Gerais, conforme NBR 6123/1988.

V0=35m/s

O quadro a seguir apresenta os fatores considerados:

Tipo	Descrição	Fator
<i>S</i> 1	Fator topográfico Terreno plano ou fracamente acidentado	1
<i>S2</i>	Fator de rugosidade Categoria III - Classe B	0,87
53	Fator estatístico Grupo 1 "Edificações cuja ruína total ou parcial pode afetar a segurança ou possibilidade de socorro a pessoas após uma tempestade destrutiva (hospitais, quartéis de bombeiros e de força de segurança, centrais de comunicação e etc.)	1,1

A partir dos valores expostos foram obtidos os coeficientes de pressão externa para as diferentes situações de projeto, conforme anexo.

Obtidos junto à NBR 6123:1988 os coeficientes de pressão:

Coeficiente de pressão interna

 $Cpi\ 1 = -0.30$

 $Cpi\ 2 = 0.00$

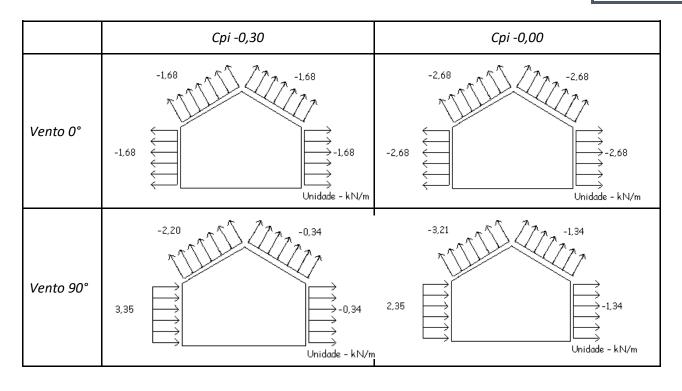
Velocidade Característica de Vento

Vk = Vo * S1 * S2 * S3

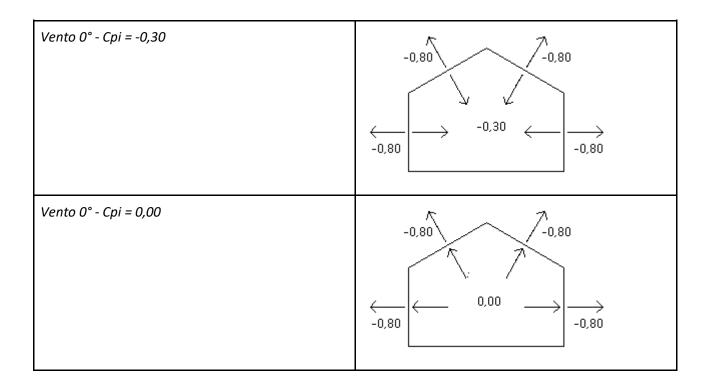
Vk = 35,00 * 1,00 * 0,87 * 1,10

Vk = 33,61 m/s

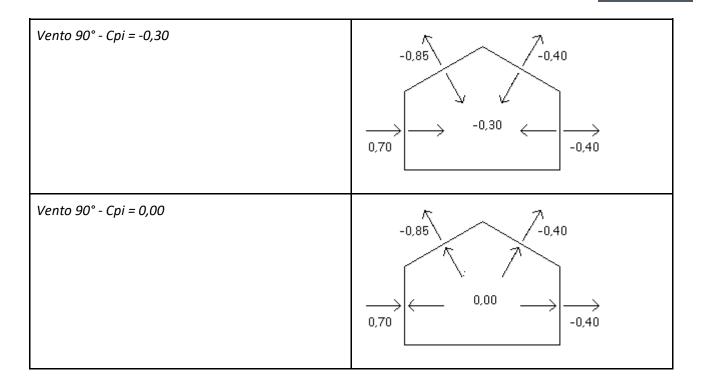
Pressão Dinâmica


 $q = 0,613 * Vk^2$

 $q = 0,613 * 33,61^2$


 $q = 0.69 \, kN/m^2$

A partir das combinações dos coeficientes de pressão de telhados e paredes acima expostos foram definidos os coeficientes para definição dos esforços resultantes (considerando os casos mais desfavoráveis), conforme apresentado no quadro a seguir:



Os esforços resultantes são apresentados:

4.3 CARGAS PERMANENTES:

Foram consideradas cargas permanentes de telhado com as seguintes especificações, conforme projeto arquitetônico:

Telha tipo sanduíche, trapezoidal com isolamento acústico e espessura de 0,43 mm, altura de 25 mm, com peso próprio de 3,91 Kg/m²

Carga suportada de 108 kgf/m² para uma flecha limite de L/180

Inclinação inferior a 15%

Ressalta-se que a telha calculada não necessariamente será a adotada na execução, podendo ser substituída por similar desde que o peso próprio não ultrapasse a especificada.

5. DIMENSIONAMENTO

O dimensionamento dos pórticos estruturais e fundações foram feitos em software específico, respeitadas todas as prescrições de normas e cargas apresentadas nos itens 2 e 4 do presente memorial de cálculo.

5.1 PEÇAS METÁLICAS:

As peças metálicas apresentadas no quadro resumo no item 8 deste documento são referentes às 6 (seis) treliças - banzos superior e inferior, montantes diagonais e verticais e aos 12 (doze) pilares distribuídos a cada 4,86m, conforme projeto estrutural.

Peças	Perfil
Banzo superior	U100X50X17x3.75
Banzo inferior	U100X50X17x3.75
Montantes diagonais	L 3/4 x 3/16", união dupla
Montantes verticais internos	L 3/4 x 1/8", união dupla
Montantes diagonais externos	U100X80X6.30
Tirantes	Barras redondas 3/8"
Terças	C100X50X17X3.35
Pilares	C150X60X20X4.25, Caixa dupla soldada

O quantitativo geral das peças metálicas é apresentado no quadro resumo no item 8 deste documento, conforme apresentado em projeto estrutural.

5.2 LIGAÇÕES:

As ligações metal-base de concreto foram dimensionadas em software específico, seguindo prescrições normativa. Em geral, as verificações analisadas são:

Em cada placa de ancoragem realizam-se as seguintes verificações (assumindo a hipótese de placa rígida):

5.2.1. Concreto sobre o qual se apoia a placa

Verifica-se se a tensão de compressão na interface placa de ancoragem-concreto é menor que a tensão admissível do concreto segundo a natureza de cada combinação.

5.2.2. Parafusos de ancoragem

a)Resistência do material dos parafusos: Decompõem-se os esforços atuantes sobre a placa em esforços axiais e cortantes nos parafusos e verifica-se que ambos os esforços, isoladamente e com interação entre eles (tensão de Von Mises), produzem tensões menores que a tensão limite do material dos parafusos.

b)Ancoragem dos parafusos: Verifica-se a ancoragem dos parafusos no concreto, de forma que não se produza deslizamento por falta de aderência, arrancamento do cone de ruptura ou fratura por esforço cortante (esmagamento).

c)Esmagamento: Verifica-se se em cada parafuso não se ultrapassa o esforço cortante que produziria o esmagamento da placa contra o parafuso.

5.2.3. Placa de ancoragem

a)Tensões globais: Em placas com balanços, analisam-se quatro seções no perímetro do perfil, e verificamse em todas elas se as tensões de Von Mises são menores que a tensão limite, de acordo com a Norma.

b)Flechas globais relativas: Verificam-se os balanços das placas para que não apareçam flechas maiores que 1/250 do balanço.

c)Tensões locais: Verificam-se as tensões de Von Mises em todas as placas locais nas quais tanto o perfil como os enrijecedores dividem a placa de ancoragem propriamente dita. Os esforços em cada umas das subplacas obtêm-se a partir das tensões de contacto com o concreto e as axiais dos parafusos. O modelo gerado resolve-se por diferenças finitas.

Para realizar a ligação da treliça com a base do pilar, foram calculadas placas de base que deverão ser soldadas na base da treliça. A placa contém quatro furos para fixação dos parafusos que fará a ligação da treliça com o pilar. Os parafusos foram dimensionados verificando os critérios já expostos. Tanto a placa quanto o parafuso foram verificados conforme as normas citadas no item 2.

Foram dimensionadas as placas base, totalizando 12 placas tipo 1, perfazendo o seguinte quantitativo:

Elementos para aparafusar							
Tipo	Material	Quantidade	Descrição				
Porcas	Classe 8S	120	5/8", ASTM A563				
Anilhas	Tipo 1	120	5/8", ASTM F436				

Placas de base								
Material	Elementos	Qtde	Dimensões (mm)	Peso (kg)				
	Placa base	12	350x350x18	207,71				
	Enrijecedores passantes	24	350/210x100/30x6.3	35,73				
A-36 250Mpa	Enrijecedores não passantes	48	108/38×100/30×6.3	19,99				
	Total	263,43						
ASTM A-307 (liso)	Parafusos de ancoragem	120	Ø 15.9 - L = 354 + 181	99,72				
	Total	99,72						

Elementos das ligações das placas de base:

Elementos complementares									
Peça	Geometria			Furos Aço					
	Esquema	Largura (mm)	Altura (mm)	Espessura (mm)	Qtd	Diâm. (mm)	Tipo	f _y (kgf/cm²)	f _u (kgf/cm²)
Placa base	* * * * * * * * * * * * * * * * * * *	350	350	18	10	15.9	A-36 250Mpa	2548.4	4077.5
Enrijecedor	108.7	108,7	100	6.3	-	-	A-36 250Mpa	2548.4	4077.5
Enrijecedor	350	350	100	6.3	-	-	A-36 250Mpa	2548.4	4077.5

6. FUNDAÇÕES

A fundação será do tipo superficial, com utilização de sapatas isoladas prismáticas. Todas as verificações foram feitas em software específicos, resultando em 2 (dois) tipos de sapatas, dimensionadas conforme exemplo de análise apresentada no item 8 deste documento a este memorial.

O travamento dos pilares será feito por meio de vigas baldrame. Para o dimensionamento do baldrame não foram consideradas cargas aplicadas. A dimensão das vigas baldrame é 15x30 cm, dotadas de armadura longitudinal de bitola 10mm e estribos de 5mm. Um exemplo das verificações feitas em software específico, é apresentada no item 8 deste documento. É importante salientar que foram feitas as verificações respeitando os critérios da NBR 6122:1994.

7. PISO DE CONCRETO ARMADO

O piso de concreto armado será executado com concreto de resistência característica de 25Mpa com dimensão variando de 12 cm á 14cm devido as inclinações para a drenagem do local, serão realizados juntas serradas sobre o piso para se evitar trincas no concreto e será utilizada armadura em tela soldada (Q92) conforme orientações do projeto estrutural.

iCTHUS ENGENHARIA

8. CONSIDERAÇÕES FINAIS:

As informações contidas neste Memorial Descritivo são válidas somente para o presente caso e são baseadas em avaliações, análises, projetos e planilhas, todas feitas por este profissional em sua vistoria nas referidas considerações, sendo de cunho exclusivamente técnico.

Este Memorial Descritivo é composto por 33 (trinta e três) páginas, sendo 7 (sete) itens textuais e 1 (um) de anexos: 1- coeficientes para cálculo de estruturas de concreto; 2- coeficientes para cálculo de peças de aço dobradas; 3- coeficientes para cálculo de peças de aço laminadas; 4- coeficientes para combinações: tensões de terreno; 5- coeficientes para combinações: deslocamentos; 6- coeficiente de pressão e forma para força de vento; 7- exemplo de cálculo de placas de ancoragem; 8- planilhas de cálculo das soldas; 9exemplo de verificação das sapatas de concreto armado; 10- exemplo de verificação de viga de travamento; todas escritas de um só lado e impressas em computador, todas rubricadas e esta última datada e assinada.

Em razão do acima exposto é vedado o uso, citação, ou confecção de cópia deste Memorial de cálculo sem a devida autorização deste profissional.

A Icthus Engenharia, por meio deste profissional, coloca-se à disposição para os esclarecimentos que eventualmente se façam necessária.

Cachoeira de Minas (MG), 25 de agosto de 2020.

Icthus Engenharia e Construções Ltda CNPJ: 11.753.418/0001-96

Carlos Henrique Amaral Rossi Engenheiro Civil e de Segurança do Trabalho CREA-MG:46.052/D

9. QUADROS E PLANILHAS DE CÁLCULO

9.1 COEFICIENTES PARA COMBINAÇÕES DE CONCRETO EM FUNDAÇÕES (E.L.U.) CONFORME ABNT NBR 6118:2014

Situação 1							
	Coeficientes parc	ciais de segurança (g)	Coeficiente	es de combinação (y)			
	Favorável	Principal (ψp)	Acompanhamento (ψa)				
Permanente (G)	1,00	1,40	-	-			
Sobrecarga (Q)	0,00	1,40	1,00	0,80			
Vento (Q)	0,00	1,40	1,00	0,60			

Situação 3							
	Coeficientes pard	ciais de segurança (g)	Coeficientes	de combinação (y)			
	Favorável	Desfavorável	Principal (ψp)	Acompanhamento (ψa)			
Permanente (G)	1,00	1,20	-	-			
Sobrecarga (Q)	0,00	1,00	0,60	0,60			
Vento (Q)	0,00	1,00	0,00	0,00			
Acidental (A)	1,00	1,00	-	-			

9.2 COEFICIENTES PARA COMBINAÇÕES DAS PEÇAS DE AÇO DOBRADO CONFORME ABNT NBR 14762: 2010

Normal					
	Coeficientes parciais de segurança (g)		Coeficientes parciais de segurança (g) Coeficientes de combinação (y)		s de combinação (y)
	Favorável	Desfavorável	Principal (ψ _p)	Acompanhamento (ψ _a)	
Permanente (G)	1,00	1,25	-	-	
Sobrecarga (Q)	0,00	1,50	1,00	0,80	
Vento (Q)	0,00	1,40	1,00	0,60	

Acidental				
	Coeficientes parciais de segurança (g)		Coeficiente	s de combinação (y)
	Favorável	Desfavorável	Principal (ψ _p)	Acompanhamento (ψ _a)
Permanente (G)	1,00	1,10	-	-
Sobrecarga (Q)	0,00	1,00	0,60	0,60
Vento (Q)	0,00	1,00	0,00	0,00
Acidental (A)	1,00	1,00	-	-

9.3 COEFICIENTES PARA COMBINAÇÕES DAS PEÇAS DE AÇO LAMINADO CONFORME ABNT NBR 8800: 2008

		Normal		
	Coeficientes parciais de segurança (g)		Coeficiente	s de combinação (y)
	Favorável	Desfavorável	Principal (ψ _p)	Acompanhamento (ψ _a)
Permanente (G)	1,00	1,50	-	-
Sobrecarga (Q)	0,00	1,50	1,00	0,80
Vento (Q)	0,00	1,40	1,00	0,60

Acidental				
	Coeficientes parciais de segurança (g)		Coeficientes de combinação (y)	
	Favorável	Desfavorável	Principal (ψ _p)	Acompanhamento (ψ _a)
Permanente (G)	1,00	1,30	-	-
Sobrecarga (Q)	0,00	1,00	0,60	0,60
Vento (Q)	0,00	1,00	0,00	0,00
Acidental (A)	1,00	1,00	-	-

9.4 COEFICIENTES PARA COMBINAÇÕES - TENSÕES SOBRE O TERRENO

Ações variáveis sem sismo			
	Coeficientes parciais de segurança (g)		
	Favorável	Desfavorável	
Permanente (G)	1,00	1,00	
Sobrecarga (Q)	0,00	1,00	
Vento (Q)	0,00	1,00	

Acidental				
	Coeficientes parciais de segurança (g)			
	Favorável	Desfavorável		
Permanente (G)	1,00	1,00		
Sobrecarga (Q)	0,00	1,00		
Vento (Q)	-	-		
Acidental (A)	1,00	1,00		

9.5 COEFICIENTES PARA COMBINAÇÕES - DESLOCAMENTOS

Ações variáveis sem sismo				
	Coeficientes parciais de segurança (g)			
	Favorável	Desfavorável		
Permanente (G)	1,00	1,00		
Sobrecarga (Q)	0,00	1,00		
Vento (Q)	0,00	1,00		

iCTHUS ENGENHARIA

9.6 COEFICIENTES DE PRESSÃO E DE FORMA PARA CÁLCULO DA FORÇA DE VENTO NA ESTRUTURA

	Vento 0°	Vento 0°
Paredes	-0,80 A1 B1 -0,80 -0,50 -0,42 A3 B3 -0,42	90° 0,70 A B -0,40 D1 D2 -0,40 -0,80 -0,40
Telhado	0° E -0,80 -0,80 -0,44 -0,44 H -0,38 I -0,38 J	90 ⁰ E -0.96 -0.40 G G F -0.96 -0.40 H J

9.7 EXEMPLO DE VERIFICAÇÃO DAS PLACAS DE ANCORAGEM - PLACA TIPO 1

Aqui será apresentado apenas um exemplo, porém a mesma verificação foi feita para todas as placas, em software específico.

Verificação	Valores	
	Mínimo: 47 mm	
Distância mínima entre chumbadores: 3 diâmetros	Calculado: 91 mm	
	Mínimo: 23 mm	
Distância mínima chumbador-perfil: 1.5 diâmetros	Calculado: 24 mm	
Distância mínima chumbador-borda: 2 diâmetros	Mínimo: 31 mm	
Distancia minima chumbador-borda: 2 diametros	Calculado: 40 mm	
Esbeltez dos enrijecedores:	Máximo: 50	
Paralelos a X:	Calculado: 41.9	
Paralelos a Y:	Calculado: 38.9	
Comprimento mínimo do parafuso:	Mínimo: 19 cm	
Calcula-se o comprimento de ancoragem necessário por aderência.	Calculado: 30 cm	
Ancoragem chumbador no concreto:		
	Máximo: 2.39 t	
Tração:	Calculado: 1.85 t (Continu	

(Continua...)

Verificação	Valores
Cortante:	Máximo: 1.673 t
Cortante:	Calculado: 0.15 t
	Máximo: 2.39 t
Tração + Cortante:	Calculado: 2.065 t
Tração chumbadoros	Máximo: 4.541 t
Tração chumbadores:	Calculado: 1.85 t
Tensão de Von Mises nos chumbadores:	Máximo: 2293.58 kgf/cm²
rensao de von Mises nos chumpadores:	Calculado: 939.466 kgf/cm²
Limite de esforço de corte em um chumbador atuando contra a	Máximo: 16.38 t
placa	Calculado: 0.149 t
Tensão de Von Mises em seções globais:	Máximo: 2548.42 kgf/cm²
Direita:	Calculado: 246.843 kgf/cm²
Esquerda:	Calculado: 246.843 kgf/cm²
Acima:	Calculado: 921.322 kgf/cm²
Abaixo:	Calculado: 773.783 kgf/cm²
Flecha global equivalente: Limite da deformabilidade dos balanços	Mínimo: 250 (Continua

(Continua...)

Verificação	Valores	
Direita	Calculado: 30010.4	
Esquerda	Calculado: 28294.4	
Acima	Calculado: 9164.42	
Abaixo	Calculado: 11556.9	
Tensão de Von Mises local: Tensão por tração de chumbadores sobre placas em balanço	Máximo: 2548.42 kgf/cm² Calculado: 878.78 kgf/cm²	
Todas as verificações foram cumpridas		

(Continuação...)

9.8 EXEMPLO DE VERIFICAÇÃO DAS SAPATAS DE CONCRETO ARMADO

Aqui será apresentado apenas um exemplo, porém a mesma verificação foi feita para todas as sapatas, em software específico.

Referência: N542// Dimensões: 95 x 95 x 40 / 30 //Soldados: Xi:Ø10c/20 Yi:Ø10c/20			
Verificação	Valores		
Ângulo máximo taludo:	Máximo: 30 graus		
Ângulo máximo talude:	Calculado: 18.4349 graus		
Tensão média em combinações fundamentais:	Máximo: 2.5 kgf/cm²		
	Calculado: 0.575kgf/cm²		
Tensão média em combinações acidentais:	Máximo: 3.75 kgf/cm²		
	Calculado: 2.07 kgf/cm²		
Tensão máxima em combinações acidentais:	Máximo: 4.687 kgf/cm²		
	Calculado: 4.144 kgf/cm²		
Tombamento da sapata: Se o % de reserva de segurança é maior que zero, pode ser dito que os coeficientes de segurança ao tombamento são maiores que os valores exatos exigidos para todas as combinações de equilíbrio.			
Na direção X:	Reserva segurança: 90946.8 %		
Na direção Y:	Reserva segurança: 18.7 %		
Flexão na sapata:			
Na direção X:	Momento: 0.22 t·m		
Na direção Y:	Momento: 1.06 t·m		

(continua...)

Verificação	Valores	
Cortante na sapata:		
Na direção X:	Cortante: 0.00 t	
Na direção Y:	Cortante: 0.00 t	
Compressão oblíqua na sapata:	Máximo: 546.08 t/m²	
Combinações fundamentais:	Calculado: 5.53 t/m²	
Combinações acidentais:	Calculado: 7.77 t/m²	
Altura mínima:	Mínimo: 15 cm	
	Calculado: 30 cm	
Espaço para ancorar arranques na fundação: N542:	Mínimo: 30 cm	
	Calculado: 34 cm	
Quantidade geométrica mínima:	Mínimo: 0.001	
Armadura inferior direção X:	Calculado: 0.001	
Armadura inferior direção Y:	Calculado: 0.001	
Quantia mínima necessária por flexão:	Calculado: 0.0011	
Norma Brasileira ABNT NBR 6118:2014. Artigo 17.3.5.2		
Armadura inferior direção X:	Mínimo: 0.0001	

(continua...)

Verificação	Valores
Armadura inferior direção Y:	Mínimo: 0.0003
Diâmetro mínimo das barras:	Mínimo: 10 mm
Malha inferior:	Calculado: 10 mm
Espaçamento máximo entre barras:	Máximo: 30 cm
Armadura inferior direção X:	Calculado: 20 cm
Armadura inferior direção Y:	Calculado: 20 cm
Espaçamento mínimo entre barras:	Mínimo: 10 cm
Armadura inferior direção X:	Calculado: 20 cm
Armadura inferior direção Y:	Calculado: 20 cm
Comprimento de ancoragem:	Mínimo: 11 cm
Armadura inf. direção X para dir:	Calculado: 11 cm
Armadura inf. direção X para esq:	Calculado: 11 cm
Comprimento de ancoragem:	Mínimo: 11 cm
Armadura inf. direção Y para cima:	Calculado: 11 cm
Armadura inf. direção Y para baixo:	Calculado: 11 cm
Comprimento mínimo das dobras:	Mínimo: 11 cm
	(continua

(continua...)

Verificação	Valores
Armadura inf. direção X para dir:	Calculado: 11 cm
Armadura inf. direção X para esq:	Calculado: 11 cm
Armadura inf. direção Y para cima:	Calculado: 11 cm
Armadura inf. direção Y para baixo:	Calculado: 11 cm
Todas as verificações foram cumpridas	

(...continuação)

9.9 EXEMPLO DE VERIFICAÇÃO DAS VIGAS DE TRAVAMENTO (BALDRAME) DE CONCRETO ARMADO

Aqui será apresentado apenas um exemplo, porém a mesma verificação foi feita para todas as vigas, em software específico.

Referência: VB [N534-N533] (Viga de travamento) -Dimensões: 15.0 cm x 30.0 cm Armadura superior: 2Ø10 CA-50 //Armadura inferior: 2Ø10 CA-50// Estribos: 1xØ5 CA-60c/10 Verificação Valores Mínimo: 4.2 mm Diâmetro mínimo estribos: Calculado: 5 mm Espaçamento mínimo entre estribos: Norma Brasileira ABNT Mínimo: 2.2 cm NBR 6118:2014. Artigo 18.3.2.2 Calculado: 24.5 cm Mínimo: 2.2 cm Espaçamento mínimo armadura longitudinal: Norma Brasileira ABNT NBR 6118:2014. Artigo 18.3.2.2 Calculado: 6 cm Armadura superior: Armadura inferior: Calculado: 6 cm Máximo: 30 cm Espaçamento máximo estribos: Sem cortantes: Calculado: 25 cm Espaçamento máximo armadura longitudinal: Máximo: 30 cm Calculado: 6 cm Armadura superior:

Todas as verificações foram cumpridas

Armadura inferior:

Calculado: 6 cm

Página: Al26/26

Cálculo Estrutural – Estruturas de Concreto Armado e Metálica

9.10 CÁLCULO DO PISO DE CONCRETO ARMADO

Conforme estudo técnico ET-22 e ET-79 da ABCP (Associação Brasileira de Cimento Portland), foram calculadas a espessura da placa variando de 12cm e 14cm, sub-base granular de 5cm, área confinada coberta e tráfego leve sem direção preferencial, existência cargas de cargas estáticas (brinquedos), variação máxima da temperatura do concreto de 17° C e utilização de lona plástica entre a sub-base e a placa de concreto.

Observações: Não foram adotadas barras de transferência nas juntas transversais de dilatação / retração devido ao baixo valor das cargas estáticas e dinâmicas solicitantes no piso.

